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Abstract. Recent experimental findings on a protein have shown the diffusion of vibrational energy occurs prevalently along 
non-bonded contacts instead through the backbone interaction, as it might be expected. These results are explained presenting 
a theoretical picture, supported by computational calculations, that accounts for these different behaviors in vibrational energy 
exchange process showing the collective motions on the backbone present a “superlocalized” nature as their asymptotic decay 
with the distance r is proportional to 𝑒"#$with 𝑑~1.8, whereas collective motions associated to non-bonded contacts result 
simply localized, i.e. 𝑑~1. 
 
 
 
I. Introduction 
 
The primary structure of a protein consists of a sequence of different monomers, called residues. Each residue is 
connected to the adjacent ones via covalent bonds and interacts with all the others through a broad range of weaker 
non-bonded interactions, which are usually modeled by means of Lennard-Jones and electrostatic potentials 1. 
The residue sequence encodes the three-dimensional residues arrangement, the so-called secondary and tertiary 
structure, which we can refer to as the topology or conformation. The protein topology is a combination of short-
range ordered (e.g. alpha helices or beta sheets) and disordered parts, whose different arrangement in the space 
results into a complex structure. The protein topology does not present any long-range ordering and shares 
common features with disordered solids2-3 and fractals4  5-6. The presence of interactions among residues implies 
the existence of a potential energy. This depends on the residues space arrangement; therefore, each protein 
topology is associated to a specific value of the potential energy. There exist topologies particularly relevant since 
they correspond to potential energy minima. In case the entropic contribution is much less relevant  than the 
enthalpic one, which is directly associated to the protein potential energy,  those topologies represent stable (or 
equilibrium) conformations, which proteins tend to maintain. If a protein is in thermodynamic equilibrium, it will 
visit close-to-equilibrium conformations. Its motion, thus, can be reasonably represented as a "vibration" around 
a stable conformation and the potential energy can be approximated as harmonic. In other words, if 𝒓+(𝑡) is the 
instantaneous position of the i-th residue and 𝒓+/ is its equilibrium position, the residue displacement is 𝒖+(𝑡) =
(𝒓+(𝑡) − 𝒓+/) and, its potential energy (𝑈+) can be written as a quadratic form 𝑈+ =

4
5
∑ (𝒖+7
894 𝑲+8) ∙ 	𝒖8,	where 𝑁 

is the total number of residues and 𝐾+8	is the 3 by 3 matrix containing the coupling constants between the 𝑖	and 𝑗-
th residue degrees of freedom. Therefore, the total energy of a protein system, which we refer to as vibrational 
energy (𝐸C+D), can be written as: 
 

																			𝐸C+D = ∑ 𝐸C+D+7
+94 = 				∑ 4

5
E𝑚+	𝒖̇+	 ∙ 𝒖̇+	 +	∑ (𝒖+7

894 𝑲+8) ∙ 	𝒖8	I7
+94 								   (1) 

 
where  𝑚+	is the mass of the 𝑖-th residue.  This work  investigates the exchange of vibrational energy of 𝑖-th residue, 
𝐸C+D+ , among protein residues. The large amount of  experimental7-9, theoretical/computational10-12 (To cite some) 
studies addressing this phenomenon, highlights its  biophysical relevance. Vibrational energy exchange can be 
associated and may accompany events related to protein function13 as for instance conformational changes14 or 
allosteric modulation15-16. Moreover, its inherent complexity that makes the employment of different theoretical 
and experimental techniques necessary to deeply comprehend this particular phenomenon. The goal of this study 
is, therefore, to contribute to this vast scientific effort trying to theoretically explain recently published 
experimental findings17. These studies have shown that the 𝐸C+D+  exchange (𝐸𝑣𝑖𝑏	𝑥𝑐) occurs prevalently among 
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residues connected by non-bonded interactions (named contacts). This might seem counter-intuitive since 𝐸𝑣𝑖𝑏	𝑥𝑐 
between two residues implies a displacement transfer, as can be deduced from Eq. (1). This transfer should occur 
easier through stiffer interactions like the bonded ones, i.e. along the so-called backbone. However, we will show 
the bond strength does not play a central role in this process whereas protein geometrical features, instead, are 
crucial. 
In order to investigate 𝐸𝑣𝑖𝑏	𝑥𝑐 process, we will analyze, thus, the displacement transfer between two residues. To 
this aim we will write an explicit expression for the correlation between the 𝑖-th and 𝑗-th residue displacement. 
This will help us to identify and recognize  the relevance of all the “ingredients” contributing to the displacement 
transfer and consequently to 𝐸𝑣𝑖𝑏	𝑥𝑐 process.  
 
 
II. Displacement Correlation and Normal Mode Localization 
 
The displacement correlation between different residues is defined as 〈𝒖+(𝑡)	𝒖8(𝑡 + ∆𝑡)〉(where	〈… 〉 is the 
ensemble average). To find an explicit expression for this quantity we start from the equation of motion of a single 
residue in contact with an external heat bath:  
 

 𝑚+ 	
RS𝒖T
RUS

= 	−	∑ 𝑲+8	𝒖8 − 	𝜇	
R	𝒖T
RU8 +	𝝃+(𝑡)   (2) 

 
Which is equivalent to a damped oscillator equation of motion, where 𝜇 is the viscosity coefficient and 𝝃+(𝑡)		is a 
stochastic external force statistically defined as a gaussian process, with a correlation function 〈𝝃+(𝑡)𝝃8(𝑡X)〉 =
	𝐶/𝛿+,8𝛿(𝑡 − 𝑡X) (where 𝐶/ is a constant and 𝛿’s are delta-functions ) and average zero, 〈𝝃+(𝑡)〉 = 0. Including all 
the residues, the Eq. (2) can be written as: 
 

 									𝑴	 R
S𝒖
RUS

= −𝑲		𝒖 − 𝜇	 R𝒖
RU
		+ 	𝝃(𝑡)    (3) 

 
Where 𝑴 a diagonal matrix containing the masses of all the residues and  we have introduced the 3𝑁-vector 𝒖 =
(𝒖4, 𝒖5, … . 𝒖7)  and 3𝑁	by 3𝑁 matrix 𝑲, also called Hessian matrix, composed by the submatrices  𝑲+8 . We now 

consider the equation for an overdamped oscillator, disregarding the term  𝑴	 R
S𝒖
RUS

. This will not modify the final 
solution features we are interested in, as it will be evident in the following, but it will greatly simplify its analytical 
calculation. Introducing also 𝒖̂ = 	𝑴"_S 	𝒖 , Eq. (3)  can be recast as: 
 

 			𝜇	𝑴"4 	R𝒖̂
RU
= −	𝑫		𝒖̂ 			+ 	𝝃	𝑴"_S.   (4) 

   
 Where		𝑫 = 	𝑴"_S	𝑲		𝑴"_S , is the so-called dynamical matrix	. This is a real-valued symmetric matrix, its set of 
eigenvectors	{𝒗c	}, the so-called normal modes, are orthonormal and it is convenient to expand 𝒖̂ on this basis, 
𝒖̂(𝑡) = ∑ 𝑐c(𝑡)	𝒗c	e7

c94 . Introducing this expansion in Eq. (4)  and multiplying by 	𝒗f	 both sides we have: 
 

 ∑ 𝜇	(𝑴"4	𝒗c	) ∙ 	𝒗f	 	
Rgh
RUc = ∑ −	(𝑫	𝒗c	) ∙ 	𝒗f	𝑐c	c 			+ (𝝃	𝑴"_S	) ∙ 	𝒗f	. (5) 

 
The matrices 𝑴"4 and  𝑴"_S	 can be projected on the normal mode basis set 	{𝒗c	}. On this set these matrices can 
be approximated as diagonal unitary matrix  multiplied by either 𝑚i"4 or 𝑚i"

_
S respectively, where  𝑚i  the average 

mass of a protein residue. This approximation is clarified and justified in Supplementary Materials.  Therefore, 
Exploiting this simplification and the normal mode orthonormality we can write 3𝑁	equations for the coefficient 
𝑐c(𝑡): 
 

 									𝛾
𝑑𝑐c
𝑑𝑡 = −	𝜔c5	𝑐c 				+ 	𝜉mc 

(6) 

 
Where 𝜔c5  are the eigenvalues of 𝑫, 𝛾 = n

fi
  and   𝜉mc = (𝝃	𝑴"_S) ∙ 𝒗c. It should be noticed 𝜉mc still preserve the 

same property as 𝝃+(𝑡), since 〈𝜉mc(𝑡)𝜉mf(𝑡X)〉 = 𝐶/X𝛿c,f𝛿(𝑡 − 𝑡X) , where 𝐶/X =
𝐶/

√𝑚ip , and 〈𝜉mc(𝑡)〉 = 0 . 

Assuming 𝑐c(0) = 	 𝑐cq  as initial condition the solution of Eq. (6) is: 
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𝑐c(𝑡) = 𝑐cq	𝑒"rhU +	s 𝑑𝜏	𝑒"rh(U"u)

U

q
𝜉mc(𝜏) 

(7) 

 
In which 𝜆c	 = 	

whS

x
	 . The 𝑖-th residue displacement is simply, 𝒖̂+(𝑡) = ∑ 𝑐c(𝑡)𝒗c	+e7

c94 , where 𝒗c+  is a vector 
including the entries of 𝑛-th normal mode corresponding to the three degrees of freedom of the	𝑖-th residue. Hence, 
the correlation between a residue 𝑖 and 𝑗 can be, thus, written as: 
 

 〈𝒖̂+(𝑡)𝒖̂8(𝑡 + ∆𝑡)〉 =z〈𝑐c(𝑡)𝑐f(𝑡 + ∆𝑡)〉		𝒗c	+ 	𝒗f	
8

c,f

	 (8) 

Noticing that 〈𝑐cq	𝜉mf(𝜏)〉 = 0, thus: 
 

 
〈𝑐c(𝑡)𝑐f(𝑡 + ∆𝑡)〉 = 	 {〈𝑐cq	𝑐fq	〉		𝑒"(rh|r})	U +	𝐶/X𝛿c,f s 𝑑𝜏	𝑒"(rh|r})(U"u)

U

q
~ 𝑒"r}∆U	 

(9) 

Introducing  Eq. (9) in (8) and solving the integral we get: 
 

      〈𝒖̂+(𝑡)𝒖̂8(𝑡 + ∆𝑡)〉 = ∑ �〈𝑐cq	𝑐fq	〉		𝑒"(rh|r})	U −	
����h,}
(rh|r})

�1 − 𝑒"(rh|r})U�� 𝑒"r}∆U			𝒗c	+ 	𝒗f	
8

c,f 	 (10) 

 
Finally, since we are considering close-to-equilibrium systems we assume 𝑡 ≫ 4

(rh|r})
 , therefore Eq. (10) 

reads: 
                                      				〈𝒖̂+(𝑡)𝒖̂8(𝑡 + ∆𝑡)〉 = ∑ �− ���

5r}
� 𝑒"r}∆U			𝒗f	+ 	𝒗f	

8
f  (11) 

 
The displacement correlation between the 𝑖-th and 𝑗-th residue is a sum of decaying exponential functions where 
𝜆f’s are the decaying coefficients and  the inner product 𝒗f+ 	𝒗	f

8  “weights” these functions depending on the 
specific couple of residues 𝑖 and 𝑗 we are considering. This means the normal modes values corresponding to each 
residue affects the correlation and, thus, the displacement transfer. Since normal modes are normalized there exist 
two extreme cases. A normal mode can be zero everywhere but on one residue, in this case we talk about complete 
localization. Conversely, we refer to a complete delocalization when a normal mode assumes the same value for 
all the protein residue. Therefore, the displacement correlation can be different depending on the degree of normal 
mode localization, with a minimum value in the case of complete localization. Investigating the  localization of 
normal modes, thus, turns out to be essential to gain information about the displacement transfer and, ultimately,  
on 𝐸𝑣𝑖𝑏	𝑥𝑐 process. 
 
III. Backbone and Contacts normal modes localization Property  

 
In the following we will study, hence, this particular normal mode property. However, since  the main goal of this 
study is to investigate differences in 𝐸𝑣𝑖𝑏	𝑥𝑐 process between backbone and contacts, we aim at finding possible 
differences between them related to normal modes localization. Therefore, we split the dynamical matrix 𝑫 as a 
sum of two matrices, one corresponding to backbone 𝑫D�g�and the other one to the contacts 𝑫g/c, 𝑫 =	𝑫D�g� +
𝑫g/c. This can be accomplished as 𝑫 includes only pairwise interactions coupling constants, thus, it is easy to 
distinguish from those associated to the backbone, which are, given a  residue 𝑖, the 𝑖 − 1 and 𝑖 + 1-th. Whereas, 
instead, all the other constants belong to contacts (See Fig.1). Moreover, the absolute value between backbone and 
contacts also should be different, however, as we will show in the following this will not affect the localization 
property. 
 
 

 
 
 
 

= + 
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Figure 1: Protein representation in our model. The solid red and the dashed grey lines represents covalent backbone 
and non-sequential residue bonds, which connect residues (black spheres). The entire structure is made up by the 
sum of these two contributions 
 
 
 
We will analyze separately, thus, the normal mode sets of 𝑫D�g�, 	{𝒗c,D�g�	} and 𝑫g/c, 	{𝒗c,g/c	}. This is equivalent 
to study normal modes of particular systems in which either the backbone interactions or the contacts are neglected. 
Although, those systems are unphysical, they are instrumental to understand and highlight the differences between 
the backbone and contacts related to the normal modes localization and, thus, to the 𝐸𝑣𝑖𝑏	𝑥𝑐 process. 
In this work we computed the sets 	{𝒗c,g/c	}  and 	{𝒗c,D�g�	}   for 15 different proteins (see Supplementary 
Materials) and quantify their global localization calculating the so-called participation ratio (see below).  
Therefore, we need first to calculate  𝑫D�g�(g/c) for all the proteins considered. To accomplish this goal, in this 
work, we employed an approximated model called Anisotropic Network Model18 (ANM). ANM is a further 
development of the Gaussian Network Model19, which already has been shown to give reasonable results regarding 
normal mode localization20 . Despite its approximated nature, thus, we expect to obtain feasible estimation of the 
quantities under investigation. Furthermore, its easy technical implementation allows us to apply this model to a 
large number of different proteins (see Supplementary Materials), since only the knowledge of stable protein 
conformations is required. In the following we will outline the main aspects of  this method and its exploitation in 
this work.  
In ANM  the potential energy of the protein is defined as: 
 
																																			𝑈(𝒓𝟏, 𝒓5 ……𝒓7) = 	∑ 𝑈+8��𝒅+8�� =+8 	∑ 𝜂+8(�𝒅+8� − �𝒅+8q �)5+8                                               (12) 
 
where 𝒅+8	and 𝒅+8q  are the distances between the 𝑖-th and 𝑗-th residue at each time and at the equilibrium, 
respectively. Contributions coming from residues distant more than  15	Å are assumed 0. 𝜂+8  is a constant coupling 
the 𝑖-th and the 𝑗-th residue with the following values: 
 

                  																																						𝜂+8 = �
𝜂D�g�									𝑖𝑓		𝑗 = 𝑖	 ± 1
�����	
4q

											𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                          (13) 

 
where  𝜂D�g�  is an arbitrary value. This choice of 𝜂+8 is the only slight difference from the ANM as presented by 
Atilgan et al.18. This comes from the idea to distinguish the backbone and the contacts contributions in the protein 
potential energy also according to their bond strength other than their sequence position. The difference in the 
bond energy between these two interactions can be assessed to be about one order of magnitude 1. 𝑈  is a sum of 
pairwise interactions and it can be split into two parts: 
       
																																																				𝑈 = 	∑ 𝑈+8	+,89+	±4�������� 

¡����

+	∑ 𝑈+8	+,8¢+	±4�������� 
¡��h

                                                                        (14) 

 
where all the elements 𝑈++  are 0. 𝑲 can be calculated as the potential energy hessian matrix (∇5U) evaluated in the 
equilibrium positions (𝒓+/), for the backbone (𝑲D�g�) and the contacts (𝑲g/c) separately. Finally knowing the mass 
of each protein residue and, thus 𝑴,  we can compute the corresponding dynamical matrices 𝑫D�g�	and  𝑫g/c, and 
the corresponding sets of normal modes {𝒗c	g/c	} and  {𝒗c	D�g�	}. We can now quantify the localization of 
{𝒗c	D�g�	} and 	{𝒗c	g/c	} employing the participation ratio (𝑃c), defined as 21: 
 

										𝑃c = 	
4
e7
	(∑ |𝑣c§|¨e7

§94 )"4.                          (15) 
 
Where	𝛼 is a specific degree of freedom of a residue. 𝑃c assumes well-distinguishable values in case of complete 
(de)localized normal modes. Indeed 𝑃c  = 1 if the n-th normal mode is totally delocalized, i.e. if all the degrees of 
freedom of the system contribute the same to that normal mode, which corresponds to identical values 𝑣c§ for any 
𝛼, whereas a normal mode is, instead, completely localized (all 𝑣c§ equal to zero except for one 𝛼) 𝑃c = 	1 3𝑁⁄ ≪
1. Therefore, the participation ratio, roughly, tells us the percentage of degrees of freedom significantly involved 
in a normal mode. 𝑃c can be computed for each normal mode n. Here we focus on its	 probability distribution for 
{𝒗c	D�g�	} and 	{𝒗c	g/c	} sets, disregarding the association of each 𝑃c to a particular normal mode. 
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Figure 2: Participation Ratio Distribution vs the participation ratio for {𝒗c	D�g�	} (red) and {𝒗c	g/c	} (black) 
 
 
 
 
 Fig. 2  shows the 𝑃c distribution, as a result of the average over 15 different protein topologies. The 𝑃c	distributions 
point out two relevant features: 
 

i. A significant difference between the localization of the two sets of normal modes is present. The most 
extended normal mode in {𝒗c	D�g�	}’s has a 𝑃c about four time smaller than the most extended one in the 
{𝒗c	g/c	} set. This agrees with the experimental findings mentioned above about the difference in 𝐸𝑣𝑖𝑏	𝑥𝑐. 
Normal modes associated with the backbone are more localized and, thus, less prone to exchange 𝐸𝑣𝑖𝑏. 
However, it does not clarify the reason of this difference. 
 

ii. Both {𝒗c	D�g�	} and {𝒗c	g/c	} turn out to be fairly localized, namely the largest values of 𝑃c are below 20% 
and 5% for {𝒗c	g/c	} and {𝒗c	D�g�	}, respectively. This means the single normal modes involve a small only 
number of degrees of freedom. 

 
It should be point out that varying the values of 	𝜂+8  does not affect at all these features. This means they are totally 
related to the protein topology despite the nature of the chemical bond connecting residues. Regarding (ii), it is 
noteworthily that similar localization pattern of normal modes has been already reported to occur in fractals 
media22. Besides, it turns out to be not the only common feature these structures share with protein systems. 
Experimental23-24 and computational25 studies have shown that relevant protein descriptors present power-law 
scaling which can be found also in typical self-similar structure as fractals. For instance, it has been shown that 
the protein mass 𝑀, which is included in a sphere of radius 𝐿, scales as 𝑀~	𝐿R}�®® . Similarly, the scaling of the 
normal mode density of states 𝒩	with respect to the frequency 𝜔 has been found to be 𝒩~𝜔R®"4. Reuveni et al. 
al.6 brilliantly showed the analogy between the displacement transfer  and a random walk on a protein structure, 
such a random walk presents peculiar features strengthening once again the similarity between protein and fractals  
as the mean square displacement (𝑀𝑆𝐷) time dependence follows a power-law, 𝑀𝑆𝐷	~	𝑡

5
R²³ 6, 26. The exponent 

𝑑𝑤 is related to  𝑑f�´´		 and 𝑑´  through the relation 𝑑𝑤	 = 5R𝑚𝑎𝑠𝑠
R𝑠

 27. This parameter can provide valuable information 
about the displacement transfer process.  Indeed, when 𝑑𝑚𝑎𝑠𝑠	 = 	𝑑𝑠, 𝑑𝑤	 = 	2, a normal diffusive process is 
recovered. This is the case of a perfectly ordered systems as, for instance, linear chain or square lattice, made by 
identical particles interacting harmonically, whose normal modes are completely delocalized28. Differently, 
protein systems present 𝑑f�´´ 	= 2.5 and 𝑑´ 	= 1.613, thus, 𝑑¸ = 3.3. Therefore, the random walk process, 
analogues to a displacement transfer, is sub-diffusive, and the normal modes which drives the transfer result 
localized affecting the	𝐸𝑣𝑖𝑏	𝑥𝑐 process as well.  
This localization implies that only a small portion of degree of freedom is significantly involved in the normal 
modes as already  shown by the participation ratio and, thus, the magnitude of the normal mode components	𝑣c§ 
should decay within the protein structure and  we expect this decay to be fast as the most extended normal mode 
includes less than 20% of the protein degree of freedom. We will show that the study of the normal modes decay 
will allow us to explain the differences between {𝒗c	g/c	} and {𝒗c	D�g�	} pointed out in (i).  
 
 
IV. Normal Modes Decay 

 
Since	𝑣c§  is associated to a particular residue degree of freedom, which can be located in the three-dimensional 
space, 𝑣c§ can be thought as a function of the Euclidean space 𝑣c§(𝑟). In the following, we will derive for a general 
protein topology an approximate expression for 𝑣c§(𝑟)	as a function of 𝑟. For the sake of simplicity, in our 
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reasoning we will assume a one-to-one correspondence between residues and degrees of freedom, without this 
affecting the final result. The starting point is the eigenvalue equation for the normal modes: 
 

 𝜔c5	𝒗c	=	𝑫		𝒗c (16) 
 
We split the dynamical matrix into two parts: 
 

𝜔c5	𝒗c	=	(𝑫𝒐 + 𝚫)		𝒗c       (17) 
 
where 𝑫𝒐 is a dynamical matrix of a three-dimensional square lattice of identical particles harmonically interacting 
through a single coupling constant 𝛿, and 𝚫 = 𝑫 −𝑫𝒐 . The value for 𝛿, has been chosen to be the average of all 
the entries of 𝑫. These particular choices of 𝑫𝒐 and 𝛿 are necessary to ensure that specific algebraic relations hold 
(see below). 𝑫𝒐 is associated to a perfectly "ordered" system, whose all normal modes are completely 
delocalized28. The matrix 𝚫 instead includes all the deviation from this ordered system. Starting from Eq. (17)  we 
have: 
 

				𝒗c	=	 �𝑰 −
𝑫𝒐
whS
�
"4
	 𝚫
whS
𝒗c              (18) 

 
with I the 3𝑁	 × 	3𝑁 identity matrix. We can now define: 
 

𝐺(𝜔5
c) = 		∑ �¾𝑫𝒐

whS
¿
À
�Á	

À9q
𝚫
whS

                  (19) 

 
In case ‖𝑫𝒐‖

whS
< 	1, or equivalently ‖𝑫𝒐‖ < 	𝜔c5, we can write: 

 

�𝑰 − 𝑫𝒐
whS
�
"4
= 	∑ �¾𝑫𝒐

whS
¿
À
�Á	

À9q 	                     (20) 
 

Verifying the above conditions requires computing ‖𝑫𝒐‖. Since we have chosen 𝑫𝒐 to be associated to a square 
lattice,	‖𝑫𝒐‖	~	𝛿	 29 Therefore, we need to prove 
 

   𝛿 < 	𝜔c5          (21) 
 

Eq. (21) shows that the value of 𝛿 should be upper-bounded by 𝜔c5 so that Eq. (20) holds. On the other hand, its 
value should  be comparable with the 𝚫 entries’ magnitude, thus, the decomposition of 𝑫, as presented in Eq. (17), 
is plausible. Those conditions narrow the range of values that 𝛿 can assume. The best way to verify Eq. (21)  is to 
measure 𝛿 and 𝜔c5 experimentally, avoiding approximated computational estimates. However, whereas 
measurements of	𝜔c5 can be easily performed and they have been done for a wide range of proteins30, to the best 
of our knowledge, 𝛿 has never been measured. Therefore, we estimate this value starting from two experimentally 
known quantities: The average value of protein bond elastic constant 𝑘, and the average mass of a protein residue 
< 	𝑚	 >. The former has been measured only for the bacteriorhodopsin31 and its value is around  10"4N/m, which 
we assume is representative  order of magnitude for any protein; < 	𝑚	 > has been calculated  to be around 111 
Da (see Supplementary Materials), namely 1.78	 ∙ 10"5Ç Kg. Then, the estimate for 𝛿 can be obtained as 𝑘/<
	𝑚	 >,√𝛿	~	0.75 Thz, which is comparable with the lowest vibrational frequency experimentally measured in 
proteins30. Hence, according to this assessment Eq. (17) can be considered approximately satisfied for real proteins, 
and Eq. (18) can be rewritten as: 
 

𝑣c+ =∑ ∑ �∑ ¾𝑫𝒐
whS
¿
À

Á
À9q �

+�

𝚫�É
whS� 	𝑣c

8
8 = ∑ 𝐺+8	𝑣c

8
8 		 	 	 	(22)	

 
i.e the component 𝑣c+ 	is given by the sum of all the components of the normal mode associated to all the other 
residues j times 𝐺+8 . Since 𝑣c+  decays there should be a residue "0" associated with the maximum value. 
Furthermore, as pointed out above, we expect a fast decay as suggested by short participation ratio values. 
Therefore, we assume, as approximation,  the residue 0 to be the only relevant term in the sum, and we rewrite Eq. 
(22) as: 
 

𝑣c+ ~	𝐺+q	𝑣cq              (23)	
 
where: 
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																																																																	𝐺+q = ∑ �∑ ¾𝑫𝒐
whS
¿
À

Á
À9q �

+��������� 
	

ÊT�

𝚫�Ë
whS�          (24) 

where the sum over 𝑘 runs over all the neighbors of the residue 0, namely all of the residues interacting with it. If 
we consider 𝑖 not interacting directly with 0, the element for q = 0 in 𝑔+�  is zero and 𝑔+� can be rewritten as: 
 
 

∑ �𝛿À,4 	¾
𝑫𝒐
whS
¿
+�
+ (1 − 𝛿À,4) {∑ ¾𝑫𝒐

	whS
¿
+Í_
¾𝑫𝒐
whS
¿
Í_ÍS

…	¾𝑫𝒐
whS
¿
ÍÎÏ_�

Í_,ÍS…ÍÎÏ_ ~ÐÁ
À94         (25) 

 
where 𝛿À,4 is a Kroenecker delta. In Eq. (21), the entries of the matrix 𝑫𝒐/𝜔c5 assume the values of either 0 or 
¾ �
whS
¿, depending on the presence of the interaction between the two corresponding residues. Each interaction, if 

present, “contributes” with an element ¾ �
whS
¿ in the inner sum of Eq. (25), and 𝑞 is  the number of interactions (i.e. 

residues) involved to connect the residue 𝑖 to 𝑘. Thus, each collection of connecting residues, named “path”, will 
contribute to the sum with an element ¾ �

whS
¿
À
. Since ¾ �

whS
¿	is smaller than one, the dominant term in the sum is 

associated to the smaller value of 𝑞, i.e. the shortest residue path needed to connect 𝑖 to 𝑘 (ℳ+�). This means: 
 

𝑔+�	~	¾
�
whS
¿
ℳT�

      (26) 
 
Therefore, 𝐺+8  can be recast as: 
 

                                 																																																	𝐺+8	~	∑ ¾ �
whS
¿
ℳT� 𝚫�É

whS�                                                                                             
(27) 
 
Multiplying and dividing by 𝛿 one gets: 
 

𝐺+8	~	∑ ¾ �
whS
¿
(ℳT�|4) 𝚫�É

��            (28) 
 
The above sum is dominated by the element with the smallest exponent (ℳ+� + 1), which corresponds to the 
shortest path ℳ+q connecting 𝑖	to 0: 
 

			|𝑣c+ |	~		 ¾
�
whS
¿
ℳ𝒊𝟎

	|𝑣cq|              (29) 

 
Finally, Eq. (29) can be generalized to all the residues that are ℳ-residues "away" from the residue 0: 

 

	|𝑣cℳ|	~	¾
�
whS
¿
ℳ
	|𝑣cq|              (30) 

 
We can now define a localization length 	𝜉(𝜔c) as: 
 

− 4
Õ(wh)

= lim
ℳ→Á

4
ℳ	ÚÛ	

	 	|Ch
ℳ|

	|ChË|
= 	 4

ÚÛ
	 ln ¾ �

whS
¿      (31) 

 
where 𝐿Û	is the average distance between two residues in a protein and ÝÞ �

ℳ	ÚÛ
 doesn’t appear as it tends to zero as    

ℳ	 → 	∞.	Inserting Eq. (31) in Eq. (30) we obtain: 
 

					|𝑣cℳ|	~	exp ¾−
ℓ

Õ(wh)
¿ 	|𝑣cq|             (32) 

 
 

In the above equation	ℓ = ℳ 𝐿Û is the average minimum path connecting two residues ℳ-residues distant on a 
protein, also called chemical distance in the context of fractal structures32 where ℓ is related to the Euclidean 
distance r through a power law ℓ	~	𝑟R}Th. We have calculated ℓ  and the corresponding 𝑟 for different protein 
topologies and we found this relation to hold, in line with other aforementioned similarities with fractal structure. 
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Fig. 3 shows the values  of those quantities, averaged over 15 different proteins, corresponding to the backbone 
and the contacts.  

 

 
 
 

Figure 3: Different localization behavior between {𝒗D�g�} and {𝒗g/c}. On the left, a log-log plot between the 
chemical distance l and Euclidean distance r. Blue dots are associated with the backbone whereas yellow dots 
represent the contacts. Values are averaged over 15 different protein topologies (see Supplementary Materials).  
On the right, the representation of the different behavior of |𝑣c. |(𝑟) associated to the backbone and to the contacts 

 
V.     Conclusion 
 
  The value of the exponent (𝑑f+c) governing the scaling assumes different values in the two cases. Indeed, the 
same pair of residues is connected differently depending if we consider either the backbone or contacts only  (see 
Fig. 1), therefore ℓ and in turns 𝑑f+c  differ. In particular, we have found 𝑑f+c~	1  for the contacts, whereas 
𝑑f+c~	1.8  for the backbone (Fig. 3). Recasting Eq. (32): 
 

|𝑣cℳ|	~	exp ä−
#$}Th

Õ(wh)
å 	|𝑣cq|          (33) 

 
it is evident that the distance decay of the normal modes associated with the backbone presents a qualitative 
different behavior with respect to the distance decay of contact-related normal modes (see Fig. 3). This decay law 
goes to zero faster than an exponential function and this behavior produces more localized normal modes, which 
are called superlocalized. The superlocalization of "waves" as molecular vibrations or electrons has been 
previously theoretically/computationally investigated22, 33-34 and indirect experimentally evidence observed23, 35. 
According to our theoretical explanation the above mentioned recent experimental findings are the fingerprints of 
the superlocalization of normal modes in proteins.  
In this work we have shown how the phenomenon of normal mode superlocalization affects the	𝐸𝑣𝑖𝑏	𝑥𝑐 process 
making covalent bonds less prone to transfer any kind of vibrations and, thus energy. This feature, which might 
seem counter-intuitive in the first place, is instead explained showing the corresponding normal modes are 
superlocalized. 
 
VI. Supplementary Materials 
 
See supplementary Materials for a Justification of the approximation employed in Eq. 5 and a complete list of 
proteins over which the participation ratio and  𝑑f+c  values have been averaged. 
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X. Figure Captions 
 
 
Figure 1: Protein representation in our model. The solid red and the dashed grey lines represents covalent backbone 
and non-sequential residue bonds, which connect residues (black spheres). The entire structure is made up by the 
sum of these two contributions 
 
 
 
Figure 2: Participation Ratio Distribution vs the participation ratio for {𝒗c	D�g�	} (red) and {𝒗c	g/c	} (black) 
 
Figure 3: Different localization behavior between {𝒗D�g�} and {𝒗g/c}. On the left, a log-log plot between the 
chemical distance l and Euclidean distance r. Blue dots are associated with the backbone whereas yellow dots 
represent the contacts. Values are averaged over 15 different protein topologies (see Supplementary Materials).  
On the right, the representation of the different behavior of |𝑣c. |(𝑟) associated to the backbone and to the contacts 

 
 


